
THE

SPREDITOR

USER’S MANUAL

A CheetahSoft Product

By Dennis M. Osborn

1

THE

SPREDITOR

USER’S MANUAL

A CheetahSoft Product

By Dennis M. Osborn

Copyright 1998

Visit WWW.VISIONBASIC.NET for more great software!

2

http://www.visionbasic.net/

INTRODUCTION

I’ve come across many a sprite editor, and I’ve
concocted a few editors of my own, but no sprite editor I
have ever used has made the sprite-making task easy for me.
A couple of years ago I was working on a game that would
employ quite a number of sprite shapes. But I didn’t just
want an editor that would ease the pain – I wanted my sprites
to come to life. I wanted “dynamic sprites,” sprites that
would jump off the screen, and sprites that would animate
gracefully, despite the crude graphical limits set deep within
the heart of an eight-bit Commodore machine. I put my
game on hold for just a little while – long enough to
complete my sprite-editing masterpiece: The Spreditor.

The name sounds intimidating doesn’t it? I simply
formed the name by tacking the first three letters of “sprite”
to the word “editor” – it’s a name that suits the purpose, and
yet it’s really much more than just an editor. For your
average “Joe,” the main editor is more than adequate,
incorporating more editing functions than you could possibly
ever need. But for those of you who are wizards at math,
prepare yourself for a unique editing experience.

Okay, enough blabbering! I will attempt to explain to
you, as best I can, everything there is to know on how to use
The Spreditor. I suggest reading the manual from front to
back and experimenting with The Spreditor along the way.

I wrote the main Spreditor program in BASIC, with
added machine language subroutines, and then compiled the
program with the Blitz compiler to speed it up considerably.
Because of the massive size of the program, I created the hi-

3

res editor and the multicolor editor as separate programs.
There are also two versions of The Spreditor on disk that are
more suited for ninety-degree sprite rotations. To load any
version of The Spreditor, simply turn on your Commodore
64 computer system, insert The Spreditor diskette into your
number eight disk drive, and type in the usual LOAD“*”,8,1
and press RETURN . If you decide to load The Spreditor
without turning your computer off and then on again, you
may have to type LOAD“BOOT”,8,1 instead. In a short
time you will see a menu pop up, listing the different
versions of The Spreditor next to the keys you will need to
press to access each version (for now I recommend selecting
one of the non-rotational versions). After you have made
your selection, the version you have chosen will be loaded
into memory. Soon The Spreditor’s main shape-editing
screen will pop into view.

4

THE EDITOR

As with most sprite editors, a large grid will appear
on which all sprite editing takes place. The number of the
shape currently being edited is displayed just above the grid,
along with the current drawing color. These drawing colors
are just for reference and may not match the colors used on
the actual sprites themselves.

To the right of the grid are two columns of sprites –
all eight of them – some of which may not appear visible due
to content or coloring. All multicolored sprites share two
plotting colors, but each sprite may be displayed in its own
unique color, resolution, X and Y expansion, and sprite
shape.

5

When The Spreditor is first run, each sprite to the
right of the grid is assigned a sprite shape from the 128 total
shapes available. The initial shapes chosen are the first eight
(1-8) in memory. When you are editing a sprite shape, any
sprites designated to that shape will change instantly as
editing takes place.

The bottom row of the screen is a line reserved for
user text commands. Most editing will be done by single
key presses, but sometimes you will need to type in a
command for a particular function. Let’s start with the key
presses.

On the grid you will see a flashing cursor. To move
it, simply use the cursor keys as they are normally used or
use a joystick plugged into port #2. If you find that the
cursor moves too fast for you, you may press * to slow it
down more and more, and shifting this key will bring the
speed back up to normal. In order to draw using the current
plotting color, you must press the joystick button as you
move around – drawing “free style” can only be done with
the joystick. To change the plotting color, simply use the
 + and – keys to cycle through the color choices.

You may have up to 128 sprite shapes in memory at
any given time. To cycle through the different shapes – on
the editing grid – press the space bar to advance and shift the
space bar to go back. To clear a shape that you wish to start
working on, press the CLR key (the home portion of this
key brings the cursor back to the home position, in the upper
left-hand corner).

If there’s one thing that makes sprite shape creation a
royal pain in the derrière (excuse my French) is when you
have to fill a “large” area of a sprite shape solid. To make
this job so much easier, there is a “fill” function that you can
access at any time by pressing the ç key. The filling will
begin at the cursor, and the surrounding pixels (that are the
same color as the pixel underneath the cursor) will be filled
in with the current drawing color. The fill will even wander

6

through a maze of pixels until the job is complete.
Should you need to shift the image around on the

grid, you may do so with the numeric keys 1 through 4 .
Any pixels pushed off the edge of the shape will wrap
around to the other side. Use 1 to shift up, 2 to shift
down, 3 to shift left, and 4 to shift right. Pressing 5 will
flip the shape vertically, pressing 6 will flip the shape
horizontally, and pressing 7 will rotate the top left portion
of the sprite shape clockwise at ninety-degree intervals. In
the multicolor editor, the top twelve by twelve pixels will be
rotated (the resulting image will appear somewhat distorted
for multicolor rotations). In the hi-res editor, a 21 by 21
pixel area will be rotated, which is most of the sprite shape.
If you wish to do extensive rotation work on your sprite
shapes, you may want to load up one of the rotational
editors, which reduce the grid size to make rotation work
simpler.

The Spreditor has a shape buffer that can come in
handy from time to time. To store a sprite shape to the buffer
press the 8 key. To retrieve a shape being held in the
buffer, press the 9 key. A buffered shape can be easily
copied to other shape slots with only a few key presses. For
example, if you wish to copy the current shape to the next
seven shape slots, simply press 8 and then press both the
space bar and the 9 key seven times each and alternating.
Pressing the Ø key will animate sprite #1 using the range of
shapes chosen during RUN parameter entry (the RUN
command will be explained later). For now, leave the Ø
key alone.

If you press the INST key (shifted DEL), The
Spreditor will wait for you to press yet another key before
taking action. If you press X , all pixels from the cursor to
the right edge of the sprite grid will be pushed horizontally to
the right by one pixel. All pixels running vertically along the
right edge of the sprite grid will disappear. The vertical
“space” that is opened up will not be cleared, but instead will

7

mimic the vertical column of pixels just to the right of it. If
you press Y , all pixels from the cursor to the bottom of the
sprite grid will be pushed down by one horizontal line of
pixels. Think of using X for horizontal “pushing” and of
using Y for vertical pushing. The DEL key works much
the same way, but “pulls” instead of pushes. Pixels at the
cursor will be deleted, and a space will open up at the edge
of the sprite grid. Try testing these key presses on a test
shape to better understand how they work. Since these
functions first buffer the current shape before altering it, you
may “undo” a single insertion or deletion by pressing the 9
key.

If you want to reverse your shape, press the £ key.
To reverse it back, press £ again. This works best in the hi-
res editor. For the multicolor editor, colors 0 and 3 (binary
00 and 11) will be swapped and colors 1 and 2 (binary 01
and 10) will be swapped.

If you press keys A through Z , you will be plotting
reference points on your grid. Several user-typed text
commands make reference to these points (mostly the
program commands). Let me give you a little taste of how
these reference points can be used. Move the cursor to the
home position (upper left-hand corner) and press the A key.
You will see the letter “A” appear. Now go from corner to
adjacent corner and place “B”, “C”, and “D” in the
remaining corners, in order. Next, press RETURN (this
places you in “text command mode”) and type “LINE A-B-
C-D-A” and press RETURN again. If you placed the
letters in the right corners you should see a box form before
your eyes – make sure the shape grid has been cleared and
that the drawing color is anything but the “background”
color.

You can move any of the points by simply placing the
cursor to a new location and pressing the letter of the
reference point you wish to relocate. If you wish to remove
a letter from the grid, move the cursor on top of that letter
and type the same letter on the keyboard. Letters can

8

overlap each other, but only one will be visible. All 26
letters may be used, but I don’t think you’ll need them all.

As you now know, pressing RETURN brings you
into text command mode, and the text commands will be
explained shortly, but if you press SHIFT - RETURN , the
last text command used will reappear. You can then make
any desired changes to the command and press RETURN
again for execution.

If you wish to leave The Spreditor at any time, just
press the SHIFT and RUN/STOP keys. The main
Spreditor version choice menu will load up, as long as The
Spreditor disk is still in the drive – if not, an error message
will appear and control will go back to the BASIC editor.
Your shapes will remain undisturbed in memory as you hop
from version to version of The Spreditor.

Finally, pressing any function key allows you to enter
“sprite control mode.” Each function key corresponds to a
different sprite. While you are in sprite control mode,
pressing a different function key allows you to shift control
over to a different sprite.

Sprite control mode has its own set of key presses.
As mentioned above, each function key will give you control
over a different sprite – there are eight function key presses
and also eight sprites, giving you control over all eight
sprites. You can move your selected sprite around by
pressing the cursor keys or by moving the joystick. The
current sprite being manipulated is indicated at the top of the
sprite manipulation area, as well as its shape. To change the
sprite shape to any one of the 128 shapes in memory, just
press the space bar to advance, and shift the space bar to go
back. The asterisk key works the same as it does for editing
by changing the speed of movement.

Now for the following key presses, any changes you
make to a sprite will be adhered to the sprite shape as well,
thus changing the appearance of all sprites set to that
particular shape. Pressing X turns horizontal expansion on
and off, pressing Y turns vertical expansion on and off, and

9

pressing M turns multicolor mode on and off – for the sprite
in question. The + and – keys change the sprite’s main
color. The word “SHAPE” at the top of the screen is
displayed in this color, so if your sprite does not contain
pixels in the main color, you will still know what the main
color is. The last key in the list is the RETURN key, which
returns you back to editor control.

The benefit of being able to move the sprites around
is that you can group them together to form “larger” sprites,
or you can overlap them for more colorful sprite combos
(this is especially useful for hi-res sprites, which have only
one plotting color).

That’s basically it for Spreditor key presses. Listings
in the back of this manual provide a quick reference should
you forget. There aren’t too many keys left on the keyboard
that actually don’t do anything, so the reference charts
should prove handy when you work with The Spreditor.

NOTE: Although The Spreditor was written without
prior knowledge of Creative Micro Design’s SuperCPU™, I
have added a key to toggle between the SuperCPU’s 1 MHz
and 20 MHz modes – press the @ key to toggle.

10

TEXT COMMANDS

When you press RETURN in editing mode, you
will open up a whole slew of extra commands at your
disposal. You can type each command as is, or you can even
type a single letter instead for several commands. For many
of the commands, you may omit one or more parameters.
The Spreditor simply selects a default value for parameters
that have been omitted (make sure, though, to still type in
any indicated punctuation). For example, “SET 8-128:4,M”
can be shortened to “SET 8-:4,M”. The dash and the comma
in this example can be left out safely, but for the sake of
safety, I recommend leaving the punctuation in place for all
of the commands.

BUFFER, BUF, or B

This command buffers the current shape and works the same
as pressing the 8 key (use whichever is most convenient for
you).

FETCH, FET, or F

This command fetches the shape currently being held in the
buffer and works the same as pressing the 9 key.

CLR

FORMAT: CLR
 or
FORMAT: CLR start-end,byte

11

This command “clears” the sprites from start to end using
the specified byte. Entering no parameters at all clears all
sprite shapes from the current shape to the last shape in
memory (128). This is useful when you have loaded up
some shapes into memory and wish to add to them – you can
quickly clear all shapes at the end of memory by choosing
the current shape just after the last loaded shape and then by
entering “CLR” at the bottom of the screen. Leaving out the
start parameter sets the starting point to the current shape.
Leaving out the end parameter sets the ending point to the
last shape in memory. Leaving the byte parameter out sets
the byte value to zero.

COPY or COP

FORMAT: COPY start,new,count

This command copies the shapes starting from start to the
area of shapes starting at new. The amount of shapes copied
is specified by the count. Only copy overlapping areas if
you are copying from a higher shape number to a lower
shape number. Any parameters left out will be set to a value
of 1.

LINE or L

FORMAT: LINE letter-letter...

This command draws lines between lettered reference points
using the current plotting color. You can follow this
command with many reference points if you wish, separating
the letters with dashes. Here are some examples of how to
use the command:

LINE A-B
LINE A-B-C
LINE A-L B-M

12

The first example connects points A and B with a line. The
second example connects points A and B with a line and
connects points B and C with a line. The last example
connects points A and L with a line and connects points B
and M with a line (points L and B are not connected).

SAVE

FORMAT: SAVE start-end,filename{,address}
 or
FORMAT: SAVE shape,filename{,address}
 or
FORMAT: SAVE filename{,address}

This command saves the specified range of sprite shapes to
disk. Leaving out the start parameter defaults to the first
shape. Leaving out the end parameter defaults to the last
shape. Leaving out the dash (and thus the end parameter)
causes only the one specified shape to be saved to disk.
Leaving out both the start and end parameters causes all 128
shapes to be saved to disk. The filename can contain letters
and numbers only and should begin with a letter – spaces are
deleted. If you specify a loading address (the address you
want the shapes to load at for your own programs), the
filename will be tagged with a “MOB” extension. A
filename of “CRASH” would appear as “CRASH.MOB” in
your disk directory. Do not type quotes around your
filename! If a loading address is not specified, then the
filename will be tagged with a “DAT” extension instead.
The resulting file cannot be loaded into memory with the
BASIC “LOAD” command from your programs since a
loading address is not saved with the file. Any program that
accesses files such as these must load them into memory
byte by byte.

When your shape data is first saved to disk, it is
saved under the filename of “FILE.MOB”. When the save is
completed, your old file – if there is a previous version – will

13

be deleted and your new file will be renamed to your chosen
filename (from the temporary name “FILE.MOB”). This
protects your old file data until the new data has finished
saving. Just make sure there is always ample room on disk
before you start to save any new data.

A feature of The Spreditor not found in other sprite
programs is the saving of sprite properties along with the
shape data. In sprite control mode you can change the sprite
X and Y expansion, color, and color mode (multicolor or hi-
res). These properties are saved along with sprite shape data
in a manner that is virtually invisible. Each sprite shape
occupies 63 bytes of memory, and each shape is separated by
an extra byte in between. The Spreditor uses this extra byte
to store property information for the shape just before the
byte. The two colors shared by all multicolor sprites are
tagged onto the very end, so keep this in mind when you load
the data into memory from your own programs. The
property data should be virtually invisible and should not
pose any problems when you load sprite shapes for your own
use. When you load sprite shapes created by The Spreditor
back into The Spreditor, these properties will reinstate
themselves. This is a tremendous benefit to the designing
process and can also benefit those to whom you give your
shapes to use as well.

For both the SAVE and LOAD commands, the screen
will temporarily blank during all disk access. It appears that
leaving the screen display visible sometimes interferes with
drive communications.

LOAD

FORMAT: LOAD start,filename*
 or
FORMAT: LOAD filename*

This command loads a variety of sprite files from disk into
memory. Specifying a starting shape is optional – if no

14

starting shape is specified, then the shapes will load in
starting at the current shape being edited. If you are loading
any files other than those ending with the “DAT” extension,
add an asterisk (*) to the end of the filename. Files not
tagged with “DAT” will be assumed to have a loading
address (which will be ignored and tossed away when
loaded). Spreditor files normally are tagged with the
“MOB” extension. Other sprite shape files will probably be
tagged with “SPR”, some other extension, or none at all.
When you type the asterisk after a filename, The Spreditor
actually uses the asterisk when it loads your file, so be
careful not to use similar filenames (ex.: “FROG.MOB” and
“FROG.SPR”).

Since non-Spreditor files will not contain sprite
property information, the shapes loaded will probably appear
invisible against the background because they will probably
be black – you can use the SET command to make them
visible by changing their color. You may also have to
rename non-Spreditor sprite files in order for them to load
properly – for example, you might have two files on disk
titled “BLUE CARS.SPR” and “BLUE TRUCKS.SPR”.
You can not access both of these files as named.

DIR or D

This command allows access to the directory listing of files
on disk all tagged with “DAT,” “MOB,” or “SPR”
extensions.

DEV

FORMAT: DEV number

If you want to use a disk drive with a number other than
eight, you can do so by implementing this command. The
device number range is 8 to 11.

15

SET

FORMAT: SET start-end:col,MXY

This command sets the sprite properties for the given range
of shapes. This command is especially useful right after you
load shape files not created using The Spreditor. Following
the colon, you first must specify the sprite color (0-15). If
none is given, then a color used on the editing grid will be
chosen (the grid color that represents the main sprite color).
Following the color, you can select multicolor, X-expansion,
and Y-expansion by simply using the letters “M,” “X,” and
“Y” respectively. Do not use commas to separate the
letters. Using no letters at all defaults the sprite properties
to the current editor’s own resolution with no expansions.
Here’s an example that “sets” shapes 1 through 10 to the
color blue, multicolor resolution, and vertical expansion:

SET 1-10:6,MY

Using a letter more than once will reverse the condition of
the property associated with that letter. For instance, to set
sprites to hi-res you could use “MM.” If you are going to
start creating sprite shapes from scratch, then I suggest using
this command before you begin creating any shapes.

ANIM or A

FORMAT: ANIM num,start-end
 or
FORMAT: ANIM num,start-end,start-end,...

EXAMPLES: ANIM 1,16-24 and ANIM 4,1-31,32-2

This command allows you to animate up to eight sprites
using a selected series of shapes. The first parameter
specifies the number of sprites you wish to animate. If you
select “1,” then only the first sprite will animate. If you

16

select “2,” then the first two sprites will animate. If you
select “8,” then all eight sprites will animate. The same
series of shapes will be used for all sprites chosen for
animation.

Your animation series may contain up to 128 shapes,
but you are not limited to using each shape only one time. In
the first example, the first sprite will animate through shapes
sixteen to twenty-four over and over again, but will only
cycle forward. The second example will animate the first
four sprites with shapes one through thirty-one, cycling
forward, and shapes thirty-two through two, cycling
backwards. Your only limitations are a series of 128 shapes
and however many ranges of shapes you can fit on a single
line of text input. For example, a command like

ANIM 8,1-16,15-2,1-32,31-2,64-79,84-99

is perfectly legal. The animation will cycle endlessly
through these shapes until RETURN or the RUN/STOP
key is pressed. Use the asterisk key, as mentioned earlier, as
a means of speed control. All starting and ending parameters
default to “1” when omitted.

This command will come in handy when you wish to
view an animation of shapes that you have “programmed”
yourself. By the way, pressing the Ø key in editing mode
actually causes the ANIM command to execute using
parameters set during a PROGram RUN (these two
commands will be explained shortly).

COL or C

FORMAT: COL share1,share2

This command allows you to set the two colors that are
shared by all multicolored sprite shapes. If no values follow
the command, then grid colors are used as defaults.

17

GRID or G

FORMAT: GRID clear,share1,main,share2,cursor
 or
FORMAT: GRID clear,main,cursor {for hi-res editors}

This command allows you to change the editing grid colors.
All ranges are 0-15, and all defaults go to black, except for
the cursor, which defaults to white, should you omit any
parameters. Here is a description of each parameter:

clear – This color represents clear pixel data.
share1 – Shared color 1 for multicolor sprites.
main – The main sprite color.
share2 – Shared color 2 for multicolor sprites.
cursor – The cursor color.

SCR or S

FORMAT: SCR border,background

This command allows you to change the screen colors. All
defaults are black when no parameters are specified. Note:
Be careful – there is no way to change the text colors.

PROG and RUN

These commands will be explained in the following sections.

18

PROGRAMMING MODE

PROG or P

This command requires no parameters – it enters you into
“shape programming mode.” One of the most outstanding
capabilities of The Spreditor is that it allows you to enter
(and run) programs that aid greatly to the sprite shape
creation process. A great deal of the time sprite shapes are
designed to animate, and sprites will cycle through those
shapes to give the illusion of movement (the pixels
themselves do not actually move). Designing a series of
animating shapes can be an arduous task and the end result
can often be disappointing to say the least. Programs written
for use with The Spreditor use math in the aid of movement,
and so movement within the sprite becomes more “exact.”
Sometimes the only difference between two shapes may rest
in a single pixel, but such a seemingly insignificant change
may be crucial to an impressive end result. Writing these
programs will give you access to almost unlimited
possibilities. Your sprites will animate more smoothly than
ever possible with your own hand designs. Remember those
reference points we talked about earlier? Here is where their
importance is made utterly clear.

In shape programming mode you will see four areas
of text entry – each area has the word “program” written
above it followed by a number. For shape generation, you
can write up to four programs that will be run in order to
basically achieve one result. You may type in text on any of
the sixteen lines available and you may cursor around if you

19

like. Each program can be up to four lines of text in length
and you don’t use line numbers as you would in BASIC –
execution order is simply left to right and then top to bottom.

Commands in shape programming mode start as a
single character (a symbol, letter, or number) and are often
followed by one or more parameters. Two or more command
statements on the same line must be separated with colons –
just like in BASIC. The following is a list of the commands
available and how they are used:

Period Command (.)

FORMAT: .{letter}{letter}{letter...}
 or
FORMAT: .{letter}-{letter}-{letter...}

EXAMPLES: .AFZK and .R-S-T

The “period command” allows you to plot dots or draw lines
on a sprite shape using reference letters placed on the sprite
grid. The first example given plots dots at points A, F, Z, and
K. The second example draws a line between R and S, and
between S and T. You may use as many letters as space
permits on a line.

Number Sign Command (#)

FORMATS: # or #{number} or {number}

EXAMPLES: # and #2 and 3

The number sign command allows you to change the current
plotting color. If the symbol stands alone, then the color is
advanced to the next one in sequence. If a number follows
or if a number stands alone with no preceding symbol, then
the plotting color is changed to the indicated value (0-3).

At Command (@)

20

FORMAT: @{letter}-{instruction & value...}

EXAMPLE: @K-PU3R2MØD1L1M1P

This command allows you to draw a complex design at the
specified point. The example above basically reads: At
point K, plot a dot, move up three pixels and plotting, move
right two pixels and plotting, turn off plotting mode, move
down one pixel without plotting, move left one pixel without
plotting, turn plotting mode back on, and plot a pixel. The
letters function as follows:

P Plots dot at current location. No following parameter.
M# Changes plotting mode on or off. A “zero” parameter

turns off plotting mode so that moves can be made
without plotting. A “one” parameter turns on plotting
so that a pixel will be lit after a single advance.

U# Advances the location up specified number of pixels.
If plotting mode is on, pixels will be lit after each
advance.

D# Like U#, but movement is downward.
L# Like U#, but movement is left.
R# Like U#, but movement is right.
C# Changes the plotting color. By itself, it changes the

plotting color to the next color in sequence. If
followed by a value in the range of zero to three, the
plotting color will be changed to the specified value.

F Begins a fill at the current location with the current
color.

Any omitted values default to a “1”. Also, for this command
you may use a comma in place of the hyphen if you wish.

Slash Command (/)

FORMAT: /{angle}

EXAMPLES: /30 and /-45

21

When you RUN a shape-generating program with The
Spreditor, you are asked at some point (before execution) to
specify a starting and ending angle, which are used primarily
for animations involving rotations of some sort. Now let’s
say you have a ten-shape animation you are working on and
you wish to have something rotating from shape to shape (or
frame to frame if you will). For instance, it could be an
object with a propeller of some kind. You decide to set your
starting angle to zero and your ending angle to 180 degrees
(since a propeller usually has two blades, we only need to
rotate the blade half of the way to give an illusion of a total
360-degree rotation). The angle for your first shape will, of
course, start at zero. The angle for your second shape will be
eighteen. The angle for your third shape will be thirty-six,
and eighteen will be added again and again for each shape in
succession. A variable keeps track of changes in the angle
value from frame to frame of animation. Well, within your
shape-generating program, you can add to or subtract from
this variable at any time by using the “slash command”
followed by an angular value, positive or negative.

This command is best utilized for generating “polar”
coordinates. I could write an entire supplemental manual
explaining polar coordinates to detail, but I could also write
manuals for every little detail not fully understood by every
single user – basically, if you have an idea of what polar
coordinates are, then you can do more with The Spreditor
than everyone else.

A Polar coordinate consists of an angle and a radius
measurement. To convert a polar coordinate to an X and Y
coordinate, merely reposition the angle-tracking variable to
the desired slope (by using the slash command) and then use
format#2 letter commands to perform the transformation
from polar to X,Y. You will probably want to bring things
“full circle” by returning the angle-tracking variable back to
its initial position when you are done. I have included
program examples in the back of the manual that

22

demonstrate the use of the slash command.

Letter Commands (A-Z)

FORMAT #1: {letter}{X or Y}{± value}

EXAMPLE: AX+1

There are several formats for “letter commands.” This first
format allows you to move a coordinate horizontally or
vertically. The above example causes reference point A to be
moved to the right by a single pixel. It could be read as:

A
x
 = A

x
 +1.

Positive values generate movement in a right or downward
direction. Negative values generate movement in a left or
upward direction. Using letter commands causes permanent
changes to the positioning of reference points – that is, while
a program is being RUN. The value you use can be positive
or negative, and does not have to be a whole number. Use
“X” for horizontal movement and use “Y” for vertical
movement. For diagonal movement you will have to use two
separate commands – one for the horizontal movement of a
reference point and one for the vertical movement of that
same reference point. Reference points can be moved
beyond the limits of the grid without causing an error.

FORMAT #2: {letter}{X or Y}{letter}{S or C}{± value}

EXAMPLES: AXBC1Ø and BYCS-5

This format moves a reference point by a certain distance,
specified by a trigonometric function, away from another
reference point. The trigonometric functions use the angle-
tracking variable’s current value for the shape in question.
Our first example above can be expanded, for our own

23

personal understanding, to:

A
x
 = B

x
 + cos(current angle)×1Ø.

Our second example can be expanded to:

B
y
 = C

y
 - sin(current angle)×5.

If you’re not familiar with trigonometry, you might just want
to use the examples in the back of the book to get by on.

The positioning of each letter defines what it
represents to the command. The first letter must be a
reference point, the second letter must be “X” or “Y”, the
third letter must be a “referential” reference point, and the
last letter must be “C” or “S” (for cosine and sine) followed
by a multiplicative value. The plus sign may be omitted.
This positioning sticks for even confusing examples like
XYYC4 or SXCC9. For your own sanity, try to avoid this
kind of confusion by not using X, Y, C, or S for reference
points.

This format works great for drawing circles, moving
pixels in a circular fashion, and for creating “polar”
coordinates.

FORMAT #3: {letter}={letter}{X or Y}{± value}

EXAMPLE: R=TX-2

This format works a little like the first format. It passes the
X and Y coordinates of the reference point following the
equal sign to the reference point preceding the equal sign,
and then a value is added to either the X or the Y coordinate
of the reference point preceding the equal sign. The example
given can be expanded (for better understanding) to:

R
y
 = T

y
 and R

x
 = T

x
 - 2.

24

If you use a reference point in the beginning of a
“letter command” that has not been placed yet on the grid,
don’t worry – in the last two formats a “new” reference point
is created using an already-existing reference point. When
your program is finished running, all reference points will be
moved back to their initial positions.

The Question Mark (?)

FORMAT: {...number}?

EXAMPLE: DX+4?

The question mark is not actually a command, but in The
Spreditor it does have a very important function. If you type
a question mark after any numerical parameter, The
Spreditor will generate a random number from zero to that
number and use the random number instead. In the above
example, a random value from zero to four will be used in
place of the original “four” value.

The NEW command

You may type this command on the text command input line
to quickly erase all four programs in memory. There is no
way to undo this command once implemented!

25

26

RUNNING A PROGRAM

RUN or R

Once you have created the program that will generate detail
on your sprite shapes, enter text command entry mode (by
pressing RETURN in the shape editor) and type in “RUN”
(or “R”) and press RETURN . You will be prompted to
enter some parameters before your program is executed.

First, you will be asked to specify a “SOURCE
SHAPE.” You may cycle through the four choices available
by pressing the spacebar. The first option is “clear,” which
causes each shape to be totally erased before any changes to
the shape can be made. The next option is “same,” which
allows you to “add to” the existing shape. This works great
for making changes to your shapes in layers (I recommend
saving your shapes regularly to disk, though, before
implementing new changes or additions). The third option is
“previous,” which uses a previous shape in your sequence of
shapes as the shape to begin with and add on to. Each shape
in succession builds on a previous shape. The final option is
“buffer,” which uses the contents of the sprite shape buffer as
the basis to start each shape out with. When your choice is
made, press RETURN .

Next you will be prompted to specify a “LOW
LIMIT” for your sequence of shapes. If you wish to use your
program to generate detail for shapes five through ten, the
low limit must be set to “5.” Use the + and – keys to
change this value (and to change the rest of the parameters to
come). Again, press RETURN when done.

27

The “HIGH LIMIT” is next, which would be shape
number “10” if you use the example above (Note: These
“limit” parameters are used when you press the Ø key in
the shape editor).

The fourth prompt asks you to specify a
“STARTING SHAPE” within the limits you have
previously set. If you are layering on changes one “RUN” at
a time, you may need to change the starting shape with each
RUN of your program. This starting shape will be the first
shape in which any changes or additions will be made.

The next prompt asks for the “DIRECTION” your
program will sequence through your chosen range of shapes.
Select “1” for forward advancement, select “-1” for
backward advancement, and select “0” for no advancement
at all. If you choose zero as your “direction,” your program
will consistently make changes or additions to only the
“starting shape” you have chosen. As an example for
selecting zero, your program may only be designed to
generate a circle for just one of your shapes, so in this case
zero would be the setting you must choose. And when the
shape is advanced beyond the chosen limits, the program
begins next with the shape on the opposite side of your limit
range (basically a wraparound).

For the next four prompts, you must enter the number
of cycles you want each of your programs to run. For most
applications, you will probably be creating (and running) one
program at a time to generate detail for a selected range of
shapes. So for “PROG1 CYCLES” you will probably be
entering a value equal to the number of shapes you have
limited yourself to earlier in the game. The value would then
be calculated by:

PROG1 CYCLES = HIGH LIMIT - LOW LIMIT + 1

For a shape range of one to thirty-two, you would need to
run your program a total of thirty-two cycles to generate
detail for all thirty-two shapes in your selected range.

28

Sometimes you may wish to run more than one
program. An example for this might include animating a
small ball of pixels from corner to corner in a sequence of
sprite shapes. Well, your first program can run the ball from
the upper left-hand corner to the upper right-hand corner;
your second program can run the ball from the upper right-
hand corner to the lower right-hand corner; your third
program can run the ball from the lower right-hand corner to
the lower left-hand corner; and your fourth and final program
can run the ball from the lower left-hand corner to the upper
left-hand corner. You would then need to know how many
total shapes your animation will require, and how many
cycles to run each program for.

After the program cycle settings are out of the way,
you will be asked to specify a “STARTING ANGLE” and
“ENDING ANGLE” as mentioned in earlier text. You can
leave these alone if your program isn’t using any letter
commands that involve trigonometric functions. As each
program cycle is ended, the variable that keeps track of the
angle for the trigonometric functions is advanced closer and
closer to the ending angle – the amount of advancement for
each cycle will depend on the total number of cycles selected
for all four programs. If you are rotating an object (in a
complete circle) within your selected range of shapes, you
would probably select zero for your starting angle and 360
for your ending angle. The range for these angles can be
anywhere from zero to 720 degrees, and the ending angle
does not have to be greater than the starting angle. The zero
degree starts on the rightmost “side” of an imaginary circular
protractor and the degrees increment in a clockwise fashion.

Finally, you will be prompted to select the color that
will start things off. The range for this parameter is 0-3, with
zero being the background color.

Now your program will begin to actually RUN, and
all of your hard work will come to fruition. Detail will be
generated one shape at a time. Each program line will be
displayed at the bottom of the screen as it is being executed,

29

and all changes to each shape will occur before your very
eyes. Once the process is completed you will see the
flashing cursor reappear. To instantly view the results of an
animation sequence you have just created, press Ø . To
change the speed of the animation (which will appear on
sprite #1) use the * key, shifted or non-shifted. To stop the
animation, press the RETURN or RUN/STOP keys. If
your project needs more work, go back and make the
necessary changes and RUN your program(s) again. You
won’t need to reset your parameters – they are
“remembered” as you last entered them. You can quickly
skip through all parameter entries by keeping the RETURN
key pressed.

To halt the RUNning process at any given time,
press SHIFT - RETURN or press the RUN/STOP key.
And as a note, your program(s) will not run unless you
specify at least one cycle for one of the programs.

30

APPENDIX A

The Spreditor Editing Keys

 CLR/HOME Clear the current shape / Home the cursor.

 SPACEBAR Advance to next shape (shift to go back).

 CRSR Move cursor on shape grid.

 + and – Change plotting color.

 1 2 3 4 Shift shape up, down, left, and right.

 5 Flip shape vertically.

 6 Flip shape horizontally.

 7 Rotate shape clockwise 90°.

 8 Store shape to buffer.

 9 Fetch shape from buffer.

 Ø Animate sprite #1 using the range set during RUN
 parameter entry.

 * Slow down the cursor movement (shift to speed it up).

 @ Toggle between 1Mhz and 20Mhz modes (if available).

 £ Reverse shape.

 ç Fill area with current plotting color.

 INST/DEL Insert/delete line (press “X” for horizontal, and
press “Y” for vertical).

 RETURN Text command entry mode (shift for last cmd.)

31

 A thru Z Plot a reference point (or “un-plot” if on letter).

 F1 thru F8 Enter Sprite Control Mode.

 SHIFT - RUN/STOP Exit the current editor.

In addition to the cursor keys, the joystick in port #2 also
moves the cursor around the grid and the button plots pixels.

APPENDIX B

Sprite Control Mode: Key Presses

 F1 thru F8 Select a sprite to control.

 CRSR Move the selected sprite.

 SPACEBAR Advance to next shape (shift to go back).

 + and – Change selected sprite’s color.

 * Slow down sprite movement (shift to speed it up).

 X X-expand on/off for selected sprite and shape.

 Y Y-expand on/off for selected sprite and shape.

 M Multicolor mode on/off for selected sprite and shape.

 RETURN Exit Sprite Control Mode.

In addition to the cursor keys, the joystick in port #2 also
moves the selected sprite around the screen.

32

APPENDIX C

Shape Programming Examples

I have provided the following “shape programs” as
examples to help you better understand the process of
programming shapes. Type in any program you wish, enter
the given parameters when you are ready to RUN, and watch
the results on your monitor. When coordinates are specified,
you must place them on the grid yourself – the upper left-
hand corner is coordinate (0,0). Unless indicated otherwise,
use the hi-res editor for these examples.

TWINKLING STAR

This example uses simple arithmetic to create an impressive
shape animation. You will need to plot coordinates A(0,0),
B(11,10), C(23,0), D(12,10), E(23,20), F(12,10), G(0,20)
and H(11,10). Notice that B and H, and F and D will
overlap.

PROGRAM 1
.A-B-C-D-E-F-G-H-A
AX.5:AY.4:BY-.4:CX-.5:CY.4:DX.5
EX-.5:EY-.4:FY.4:GX.5:GY-.4:HX-.5

SOURCE SHAPE: CLEAR
LOW LIMIT: 1
HIGH LIMIT: 24
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 24
STARTING ANGLE: 0
ENDING ANGLE: 0
COLOR: 1

Use ANIM 1,1-24,23-2 to animate when finished.

33

MESH MAKER

This program demonstrates the use of multiple programs to
generate a series of sprite shapes. It also demonstrates the
use of the “PREVIOUS” source shape setting. Clear the
first sprite shape and place A(0,0) and B(20,0) on the grid
before RUNning. Pay close attention to the differences
between the four programs when typing them in.

PROGRAM 1
.A-B:AX+4:BY+4

PROGRAM 2
.A-B:AY+4:BX-4

PROGRAM 3
.A-B:AX-4:BY-4

PROGRAM 4
.A-B:AY-4:BX+4

SOURCE SHAPE: PREVIOUS
LOW LIMIT: 1
HIGH LIMIT: 20
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 5
PROG2 CYCLES: 5
PROG3 CYCLES: 5
PROG4 CYCLES: 5
STARTING ANGLE: 0
ENDING ANGLE: 0
COLOR: 1

Press Ø to animate when finished.

34

BOXED IN

This program demonstrates the use of random numbers in the
generation of sprite shapes. Although the need for
generating random numbers is not altogether frequent, it’s
nice to know that the capacity is there. You will need to
clear the first sprite shape and place A(0,0) on the grid. Use
the multicolor editor for this example!

PROGRAM 1
@A-MØR9?D17?M1C1PD3RU3RD3
@A-MØR9?D17?M1C2PD3RU3RD3
@A-MØR9?D17?M1C3PD3RU3RD3

SOURCE SHAPE: PREVIOUS
LOW LIMIT: 1
HIGH LIMIT: 16
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 16
STARTING ANGLE: 0
ENDING ANGLE: 0
COLOR: 1

Use ANIM 1,1-16,15-2 to animate when finished

35

CIRCLE FORMULA

You can use the following program to draw a variety of
circles and ellipses on your sprite shapes when such shapes
are needed. In the program, the value of eleven is the
horizontal radius, and the value of ten is the vertical radius.
For this example, you will need to place D(11,10) on the grid
and you might want to clear the first sprite shape.

PROGRAM 1
AXDC11:AYDS10:/10
BXDC11:BYDS10:.A-B

SOURCE SHAPE: SAME
LOW LIMIT: 1
HIGH LIMIT: 1
STARTING SHAPE: 1
DIRECTION: 0
PROG1 CYCLES: 36
STARTING ANGLE: 0
ENDING ANGLE: 0
COLOR: 1

36

COPTER BLADES, TOP VIEW

Here we are going to create some spinning copter blades as
seen from a top view. Since our copter will have two blades,
we will only need to spin them a total of 180 degrees. Place
D(11,10) on the grid.

PROGRAM 1
AXDC11:AYDS10:BXDC-11:BYDS-10:/6:.A-B
@D-U1R1D2L2U2R1

SOURCE SHAPE: CLEAR
LOW LIMIT: 1
HIGH LIMIT: 30
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 30
STARTING ANGLE: 0
ENDING ANGLE: 0
COLOR: 1

Press Ø to animate when finished.

37

COPTER BLADES, SIDE VIEW

Here we are going to create the copter blades as seen from a
side view. In some of the examples, you may notice that
some of the generated shapes are identical to one another.
Don’t be too concerned with saving memory unless you
absolutely have to – keep things simple by leaving the
identical shapes in their place. Place D(9,1) on the grid.

PROGRAM 1
A=DY:B=DY:AXDC9:BXDC-9:/6:.A-B
@D-U1D1R1D2L1D5U5L1U2R1

SOURCE SHAPE: CLEAR
LOW LIMIT: 1
HIGH LIMIT: 30
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 30
STARTING ANGLE: 0
ENDING ANGLE: 0
COLOR: 1

If you would like to generate the entire helicopter in one
sweep, place the copter body into the buffer before
RUNning, and then select “BUFFER” for your SOURCE
SHAPE. If you want an added element of realism, try
making a copter that tilts to and fro. Press Ø to animate
when finished.

38

ROTATING TRIANGLE

In this example, we are creating a rotating triangle that only
needs to rotate 120 degrees. A full rotation is not necessary
since the triangle is symmetrical in thirds. Place D(11,10) on
the grid.

PROGRAM 1
AXDC11:AYDS10:/120
BXDC11:BYDS10:/120
CXDC11:CYDS10:/120
.A-B-C-A

SOURCE SHAPE: CLEAR
LOW LIMIT: 1
HIGH LIMIT: 32
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 32
STARTING ANGLE: 0
ENDING ANGLE: 120
COLOR: 1

Press Ø to animate when finished.

39

SPINNING ASTEROID

In this example, we are using “polar” coordinates to generate
the shape of an asteroid. Polar coordinates provide a
rigidness for generating shapes that you wish to rotate. In
this example we need to use two separate programs due to
the numerous instructions needed to generate the asteroid.
Before RUNning the example you will need to clear shapes
one through thirty-two. Place A(11,10) on the grid.

PROGRAM 1
/20:BXAC10:BYAS10:/70:CXAC10:CYAS10
/60:DXAC10:DYAS10:/30:FXAC4:FYAS4
/20:EXAC9.5:EYAS9.5:/30:GXAC8:GYAS8
/40:HXAC9.5:HYAS9.5:/90:.B-C-D-E-F-G-H

PROGRAM 2
/20:BXAC10:BYAS10:/250:HXAC9.5:HYAS9.5
/50:IXAC9.5:IYAS9.5:/10:JXAC7:JYAS7
/30:.H-I-J-B

SOURCE SHAPE: SAME
LOW LIMIT: 1
HIGH LIMIT: 32
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 32
PROG2 CYCLES: 32
STARTING ANGLE: 0
ENDING ANGLE: 720
COLOR: 1

Press Ø to animate when finished.

40

TEETER TOTTER

This example uses many different commands to produce two
people on a moving teeter totter. Here we are creating a
pretty complex animation with only a few lines of program
text. What could take hours of trial and error by hand can be
accomplished by The Spreditor in a matter of minutes. You
will need to place A(11,16), B(9,20), C(14,20), and D(12,16)
on the grid before running the program.

PROGRAM 1
EXAC-10:EYAS-10:FXDC10:FYDS10
@E-RU3RU2RDLD2RLD2RD3URU3
@F-LU3LU2LDRD2LRD2LD3ULU3
EX-1:FX1:.E-F A-B-C-A-D

SOURCE SHAPE: CLEAR
LOW LIMIT: 1
HIGH LIMIT: 20
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 20
STARTING ANGLE: 340
ENDING ANGLE: 380
COLOR: 1

Use ANIM 1,1-20,19-2 to animate when finished.

41

3D SPINNING CUBE

This program creates a spinning 3D “wireframe” cube.
Although creating such 3D graphics takes a lot of
preplanning, The Spreditor makes the task a lot easier. This
example only lacks true 3D depth, which is difficult to
establish. You will need to place A(11,10), B(11,13),
C(11,3), D(11,17), E(11,7), F(12,7), G(12,17), H(12,3), and
I(12,13) on the grid before running the program.

PROGRAM 1
/37:BXAC11:/25:CXAC7:/56:DXAC7:/25
EXAC11:/74:FXAC11:/25:GXAC7:/56:HXAC7
/25:IXAC11:/37:.B-C-E-D-B-I-H-F-G-I
.C-H E-F D-G

SOURCE SHAPE: CLEAR
LOW LIMIT: 1
HIGH LIMIT: 40
STARTING SHAPE: 1
DIRECTION: 1
PROG1 CYCLES: 40
STARTING ANGLE: 0
ENDING ANGLE: 360
COLOR: 1

Press Ø to animate when finished.

42

APPENDIX D

Help Routines

SPRITE INITIALIZATION ROUTINE

Here’s a routine that can be of great assistance to you
when you are using shapes generated by The Spreditor in
your own programs:

10 DIMB(8):FORD=0TO7:B(D+1)=2áD:NEXT

5000 POKE2039+SN,(SL/64+SH-1)AND255
5010 PK=PEEK(SL+SH*64-1):POKE53286+SN,PK:
MA=255-B(SN)
5020 POKE53276,(PEEK(53276)ANDMA)ORB(SN*
SGN(PKAND16))
5030 POKE53271,(PEEK(53271)ANDMA)ORB(SN*
SGN(PKAND64))
5040 POKE53277,(PEEK(53277)ANDMA)ORB(SN*
SGN(PKAND32))
5050 POKE53269,(PEEK(53269)ANDMA)ORB(SN*
SO):RETURN

You should include the first line somewhere at the beginning
of your programs (you may renumber these lines, of course).
Before entering the routine at 5000, you need to set some
variables:

SL = Shape Location, the address where your sprite data
begins.

SN = Sprite Number, the number of the sprite you wish to
initialize (range 1-8).

SH = SHape, the shape you wish to initialize your sprite
with (range 1-128).

43

SO = Sprite On/off. Use “1” if you want your sprite turned
on, or use “0” if you are not ready to display your
sprite.

This routine makes it incredibly easy to initialize sprites that
are created with The Spreditor. You won’t have to pump out
a long series of confusing pokes when setting up your
sprites. The only pokes you need to concern yourself with
are those that deal with moving your sprites into position,
and the two colors shared by all multicolor sprites. And
don’t let the variables confuse you – SL should be set to the
location specified when you saved your sprite shapes to disk
(if you are loading them in at that location), and SH should
correspond to the shape numbers as you remember them
from the editor. If you move the visible text screen to a
different location in memory, then you will have to change
the value of 2039 in the first line of the routine to the
appropriate new value. To calculate the new value, take the
location to where you’ve moved the display screen to and
add 1015.

DISK DATA LOADING ROUTINE

Why waste program space when you can load your
sprite shapes and ML routines directly into memory with a
simple routine? Using DATA statements just wastes
considerable memory and can also take up more time than a
simple LOAD when you are dealing with large amounts of
data. The following routine will load your data into memory,
and can also be used to load up files created by the users of
your program. The routine cleverly places the filename into
locations 2024-2039 before executing the SETNAM routine.
I chose this area of memory because it is definitely not a
common place for data storage. It is also exactly the length
we need it to be – sixteen bytes long. Here’s the routine:

6000 POKE780,3:POKE781,DV:POKE782,SE:SYS

44

65466:L=LEN(F$):POKE780,L
6010 FORD=1TOL:POKE2023+D,ASC(MID$(F$,D)
):NEXT:POKE781,232:POKE782,7:SYS65469
6020 POKE780,0:POKE782,LA/256:POKE781,LA
–PEEK(782)*256:SYS65493:RETURN

Of course you may renumber the lines without any problems,
if you need to. Before entering the routine at 6000, you need
to set some variables:

F$ = The Filename of the program you wish to load.
DV = The DeVice number of the disk drive (or other device)

you wish to load from.
SE = SEcondary address. A “1” causes the program to load

in at its own loading address. A zero causes the
program to load in at the location you choose.

LA = Loading Address, the address you wish the program to
start loading in at (you must set the variable SE to
zero or this address will be ignored).

45

APPENDIX E

Polar Coordinate Graph Circles

The graphing circles on the following pages can be
photocopied for designing objects that use polar coordinates
as reference points for object rotations. The circle below
illustrates how they may be used. I wish I had created some
of these much earlier for my own personal use. I hope you
enjoy using The Spreditor for all of your sprite-making
needs.

46

47

48

49

50

